Detail Information for IndEnz0002007905
IED ID IndEnz0002007905
Enzyme Type ID protease007905
Protein Name Phosphatidylserine decarboxylase proenzyme
EC 4.1.1.65

Cleaved into: Phosphatidylserine decarboxylase alpha chain; Phosphatidylserine decarboxylase beta chain
Gene Name psd Csal_2529
Organism Chromohalobacter salexigens (strain ATCC BAA-138 / DSM 3043 / CIP 106854 / NCIMB 13768 / 1H11)
Taxonomic Lineage cellular organisms Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Chromohalobacter Chromohalobacter salexigens Chromohalobacter salexigens (strain ATCC BAA-138 / DSM 3043 / CIP 106854 / NCIMB 13768 / 1H11)
Enzyme Sequence MDTPVDRDELFARMQYPLPHHLISRGVGKLAESRTPWLKDWAIRRFIRTFDVDMSQALESDPEAYACFNDFFTRALRADARPIGEGVVSPADGTLSQFGAIRQDTLVQAKGHTYSLNALLGGDAARAAPFREGSFATVYLSPRDYHRVHMPVTGTLREMVYVPGRLFSVNQATANHVPGLFARNERLVCLFDTEHGPLAMVLVGAMIVAAIETVWAGQVTPLSGRVQTTRFDEPIVIEKGQEMGRFKLGSTVVMCFGHDVAFRDVCTDGLVVNMGQSLAS
Enzyme Length 280
Uniprot Accession Number Q1QUI2
Absorption
Active Site ACT_SITE 92; /note=Charge relay system; for autoendoproteolytic cleavage activity; /evidence=ECO:0000255|HAMAP-Rule:MF_00662; ACT_SITE 149; /note=Charge relay system; for autoendoproteolytic cleavage activity; /evidence=ECO:0000255|HAMAP-Rule:MF_00662; ACT_SITE 250; /note=Charge relay system; for autoendoproteolytic cleavage activity; /evidence=ECO:0000255|HAMAP-Rule:MF_00662; ACT_SITE 250; /note=Schiff-base intermediate with substrate; via pyruvic acid; for decarboxylase activity; /evidence=ECO:0000255|HAMAP-Rule:MF_00662
Activity Regulation
Binding Site
Calcium Binding
catalytic Activity CATALYTIC ACTIVITY: Reaction=a 1,2-diacyl-sn-glycero-3-phospho-L-serine + H(+) = a 1,2-diacyl-sn-glycero-3-phosphoethanolamine + CO2; Xref=Rhea:RHEA:20828, ChEBI:CHEBI:15378, ChEBI:CHEBI:16526, ChEBI:CHEBI:57262, ChEBI:CHEBI:64612; EC=4.1.1.65; Evidence={ECO:0000255|HAMAP-Rule:MF_00662};
DNA Binding
EC Number 4.1.1.65
Enzyme Function FUNCTION: Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). {ECO:0000255|HAMAP-Rule:MF_00662}.
Temperature Dependency
PH Dependency
Pathway PATHWAY: Phospholipid metabolism; phosphatidylethanolamine biosynthesis; phosphatidylethanolamine from CDP-diacylglycerol: step 2/2. {ECO:0000255|HAMAP-Rule:MF_00662}.
nucleotide Binding
Features Active site (4); Chain (2); Modified residue (1); Site (1)
Keywords Cell membrane;Decarboxylase;Lipid biosynthesis;Lipid metabolism;Lyase;Membrane;Phospholipid biosynthesis;Phospholipid metabolism;Pyruvate;Reference proteome;Zymogen
Interact With
Induction
Subcellular Location SUBCELLULAR LOCATION: Cell membrane {ECO:0000255|HAMAP-Rule:MF_00662}; Peripheral membrane protein {ECO:0000255|HAMAP-Rule:MF_00662}.
Modified Residue MOD_RES 250; /note=Pyruvic acid (Ser); by autocatalysis; /evidence=ECO:0000255|HAMAP-Rule:MF_00662
Post Translational Modification PTM: Is synthesized initially as an inactive proenzyme. Formation of the active enzyme involves a self-maturation process in which the active site pyruvoyl group is generated from an internal serine residue via an autocatalytic post-translational modification. Two non-identical subunits are generated from the proenzyme in this reaction, and the pyruvate is formed at the N-terminus of the alpha chain, which is derived from the carboxyl end of the proenzyme. The autoendoproteolytic cleavage occurs by a canonical serine protease mechanism, in which the side chain hydroxyl group of the serine supplies its oxygen atom to form the C-terminus of the beta chain, while the remainder of the serine residue undergoes an oxidative deamination to produce ammonia and the pyruvoyl prosthetic group on the alpha chain. During this reaction, the Ser that is part of the protease active site of the proenzyme becomes the pyruvoyl prosthetic group, which constitutes an essential element of the active site of the mature decarboxylase. {ECO:0000255|HAMAP-Rule:MF_00662}.
Signal Peptide
Structure 3D
Cross Reference PDB -
Mapped Pubmed ID -
Motif
Gene Encoded By
Mass 30,890
Kinetics
Metal Binding
Rhea ID RHEA:20828
Cross Reference Brenda