IED ID | IndEnz0007000295 |
Enzyme Type ID | catalase000295 |
Protein Name |
Chanoclavine-I dehydrogenase easD ChaDH EC 1.1.1.332 Ergot alkaloid synthesis protein D Oxidoreductase 2 |
Gene Name | easD cpox2 |
Organism | Claviceps purpurea (Ergot fungus) (Sphacelia segetum) |
Taxonomic Lineage | cellular organisms Eukaryota Opisthokonta Fungi Dikarya Ascomycota saccharomyceta Pezizomycotina leotiomyceta sordariomyceta Sordariomycetes Hypocreomycetidae Hypocreales Clavicipitaceae Claviceps Claviceps purpurea (Ergot fungus) (Sphacelia segetum) |
Enzyme Sequence | MPSMTSKVFAITGGASGIGAATCRLLAERDAAVICLADVSSTNFTSLQESIAKSNPSTLVHCTELDVRSADKVDQWLQSIVSTHGDLHGAANVAGIAQGAGLRATPTILEENDAEWSRILDVNLNGVFYSTRAQVRVMKDLPPGHRSIVNVASIAAFSHVPDVYAYGTSKSACAYLTTCIAADVFWSGIRVNCVSPGITNTPMLPQFEPKAKSLDAIKDMYRDQGYPTGEADGVARTIVWLLSEDSIPVYGANINVGACPP |
Enzyme Length | 261 |
Uniprot Accession Number | O94207 |
Absorption | |
Active Site | ACT_SITE 166; /note=Proton acceptor; /evidence=ECO:0000250|UniProtKB:Q12634 |
Activity Regulation | |
Binding Site | |
Calcium Binding | |
catalytic Activity | CATALYTIC ACTIVITY: Reaction=chanoclavine-I + NAD(+) = chanoclavine-I aldehyde + H(+) + NADH; Xref=Rhea:RHEA:33891, ChEBI:CHEBI:15378, ChEBI:CHEBI:57540, ChEBI:CHEBI:57945, ChEBI:CHEBI:71487, ChEBI:CHEBI:72949; EC=1.1.1.332; Evidence={ECO:0000250|UniProtKB:Q4WZ66}; |
DNA Binding | |
EC Number | 1.1.1.332 |
Enzyme Function | FUNCTION: Chanoclavine-I dehydrogenase; part of the gene cluster that mediates the biosynthesis of fungal ergot alkaloid (PubMed:10071219, PubMed:14732265, PubMed:14700635, PubMed:15904941, PubMed:17308187, PubMed:17720822). DmaW catalyzes the first step of ergot alkaloid biosynthesis by condensing dimethylallyl diphosphate (DMAP) and tryptophan to form 4-dimethylallyl-L-tryptophan (PubMed:14732265). The second step is catalyzed by the methyltransferase easF that methylates 4-dimethylallyl-L-tryptophan in the presence of S-adenosyl-L-methionine, resulting in the formation of 4-dimethylallyl-L-abrine (By similarity). The catalase easC and the FAD-dependent oxidoreductase easE then transform 4-dimethylallyl-L-abrine to chanoclavine-I which is further oxidized by easD in the presence of NAD(+), resulting in the formation of chanoclavine-I aldehyde (PubMed:20118373, PubMed:21409592). Agroclavine dehydrogenase easG then mediates the conversion of chanoclavine-I aldehyde to agroclavine via a non-enzymatic adduct reaction: the substrate is an iminium intermediate that is formed spontaneously from chanoclavine-I aldehyde in the presence of glutathione (PubMed:20735127, PubMed:21494745). The presence of easA is not required to complete this reaction (PubMed:21494745). Further conversion of agroclavine to paspalic acid is a two-step process involving oxidation of agroclavine to elymoclavine and of elymoclavine to paspalic acid, the second step being performed by the elymoclavine oxidase cloA (PubMed:16538694, PubMed:17720822). Paspalic acid is then further converted to D-lysergic acid (PubMed:15904941). Ergopeptines are assembled from D-lysergic acid and three different amino acids by the D-lysergyl-peptide-synthetases composed each of a monomudular and a trimodular nonribosomal peptide synthetase subunit (PubMed:14700635, PubMed:15904941). LpsB and lpsC encode the monomodular subunits responsible for D-lysergic acid activation and incorporation into the ergopeptine backbone (PubMed:14700635). LpsA1 and A2 subunits encode the trimodular nonribosomal peptide synthetase assembling the tripeptide portion of ergopeptines (PubMed:14700635). LpsA1 is responsible for formation of the major ergopeptine, ergotamine, and lpsA2 for alpha-ergocryptine, the minor ergopeptine of the total alkaloid mixture elaborated by C.purpurea (PubMed:17560817, PubMed:19139103). D-lysergyl-tripeptides are assembled by the nonribosomal peptide synthetases and released as N-(D-lysergyl-aminoacyl)-lactams (PubMed:24361048). Cyclolization of the D-lysergyl-tripeptides is performed by the Fe(2+)/2-ketoglutarate-dependent dioxygenase easH which introduces a hydroxyl group into N-(D-lysergyl-aminoacyl)-lactam at alpha-C of the aminoacyl residue followed by spontaneous condensation with the terminal lactam carbonyl group (PubMed:24361048). {ECO:0000250|UniProtKB:Q50EL0, ECO:0000269|PubMed:10071219, ECO:0000269|PubMed:14700635, ECO:0000269|PubMed:14732265, ECO:0000269|PubMed:15904941, ECO:0000269|PubMed:16538694, ECO:0000269|PubMed:17560817, ECO:0000269|PubMed:19139103, ECO:0000269|PubMed:20118373, ECO:0000269|PubMed:20735127, ECO:0000269|PubMed:21409592, ECO:0000269|PubMed:21494745, ECO:0000269|PubMed:24361048, ECO:0000305|PubMed:17308187, ECO:0000305|PubMed:17720822}. |
Temperature Dependency | |
PH Dependency | |
Pathway | PATHWAY: Alkaloid biosynthesis; ergot alkaloid biosynthesis. {ECO:0000305|PubMed:10071219}. |
nucleotide Binding | NP_BIND 16..40; /note=NAD; /evidence=ECO:0000250|UniProtKB:Q12634 |
Features | Active site (1); Chain (1); Glycosylation (1); Nucleotide binding (1); Signal peptide (1) |
Keywords | Alkaloid metabolism;Glycoprotein;NAD;Oxidoreductase;Signal |
Interact With | |
Induction | |
Subcellular Location | |
Modified Residue | |
Post Translational Modification | |
Signal Peptide | SIGNAL 1..20; /evidence=ECO:0000255 |
Structure 3D | |
Cross Reference PDB | - |
Mapped Pubmed ID | - |
Motif | |
Gene Encoded By | |
Mass | 27,619 |
Kinetics | |
Metal Binding | |
Rhea ID | RHEA:33891 |
Cross Reference Brenda |