Detail Information for IndEnz0007000422
IED ID IndEnz0007000422
Enzyme Type ID catalase000422
Protein Name 4-dimethylallyltryptophan N-methyltransferase easF
EC 2.1.1.261
4-dimethylallyltryptophan methyltransferase
Ergot alkaloid synthesis protein F
Gene Name easF
Organism Epichloe festucae var. lolii (Neotyphodium lolii) (Acremonium lolii)
Taxonomic Lineage cellular organisms Eukaryota Opisthokonta Fungi Dikarya Ascomycota saccharomyceta Pezizomycotina leotiomyceta sordariomyceta Sordariomycetes Hypocreomycetidae Hypocreales Clavicipitaceae Epichloe Epichloe festucae Epichloe festucae var. lolii (Neotyphodium lolii) (Acremonium lolii)
Enzyme Sequence MSKPNVLDIRLATFEDSIVDLVINGLRKQPKTLPALLFYANEGLKHWNHHSHQPEFYPRHQEVQILKKKAQEMAASIPMNSVVVDLGSASLDKVIHLLEALEVQKKNISYYALDVSASQLESTLAAIPTQNFRHVRFAGLHGTFDDGLHWLKEAPEARDVPHTVLLFGLTIGNFSRPNAAAFLSNIGQHAFQGKSGDQCSILMSLDSCKVPTQVLRAYTCEGVVPFALQSLTYANGLFSEKNKTQASGDVQHKVFNLDEWYYLSEWNFVLGRHEASLIPRSKDIKLLPPLDGILVSKDEKVRFGCSYKYDQEERMELFAAAGVKNEVTWSDEGCDVAFYQLKLS
Enzyme Length 344
Uniprot Accession Number A2TBU2
Absorption
Active Site
Activity Regulation
Binding Site
Calcium Binding
catalytic Activity CATALYTIC ACTIVITY: Reaction=4-(3-methylbut-2-enyl)-L-tryptophan + S-adenosyl-L-methionine = 4-(3-methylbut-2-enyl)-L-abrine + H(+) + S-adenosyl-L-homocysteine; Xref=Rhea:RHEA:34435, ChEBI:CHEBI:15378, ChEBI:CHEBI:57856, ChEBI:CHEBI:58209, ChEBI:CHEBI:59789, ChEBI:CHEBI:67248; EC=2.1.1.261; Evidence={ECO:0000250|UniProtKB:B6D5I7};
DNA Binding
EC Number 2.1.1.261
Enzyme Function FUNCTION: 4-dimethylallyltryptophan N-methyltransferase; part of the gene cluster that mediates the biosynthesis of fungal ergot alkaloid ergovaline, the predominant ergopeptine product in E.festucae var. lolii (PubMed:17308187). DmaW catalyzes the first step of ergot alkaloid biosynthesis by condensing dimethylallyl diphosphate (DMAP) and tryptophan to form 4-dimethylallyl-L-tryptophan (By similarity). The second step is catalyzed by the methyltransferase easF that methylates 4-dimethylallyl-L-tryptophan in the presence of S-adenosyl-L-methionine, resulting in the formation of 4-dimethylallyl-L-abrine (By similarity). The catalase easC and the FAD-dependent oxidoreductase easE then transform 4-dimethylallyl-L-abrine to chanoclavine-I which is further oxidized by easD in the presence of NAD(+), resulting in the formation of chanoclavine-I aldehyde (By similarity). Agroclavine dehydrogenase easG then mediates the conversion of chanoclavine-I aldehyde to agroclavine via a non-enzymatic adduct reaction: the substrate is an iminium intermediate that is formed spontaneously from chanoclavine-I aldehyde in the presence of glutathione (By similarity). The presence of easA is not required to complete this reaction (By similarity). Further conversion of agroclavine to paspalic acid is a two-step process involving oxidation of agroclavine to elymoclavine and of elymoclavine to paspalic acid, the second step being performed by the elymoclavine oxidase cloA (By similarity). Paspalic acid is then further converted to D-lysergic acid (By similarity). Ergovaline is assembled from D-lysergic acid and three different amino acids by the D-lysergyl-peptide-synthetase composed of a monomudular (lpsB) and a trimodular (lpsA) nonribosomal peptide synthetase subunit (PubMed:17308187, PubMed:11592979). {ECO:0000250|UniProtKB:Q50EL0, ECO:0000269|PubMed:11592979, ECO:0000269|PubMed:17308187}.
Temperature Dependency
PH Dependency
Pathway PATHWAY: Alkaloid biosynthesis; ergot alkaloid biosynthesis. {ECO:0000305|PubMed:17308187}.
nucleotide Binding
Features Chain (1)
Keywords Alkaloid metabolism;Methyltransferase;S-adenosyl-L-methionine;Transferase
Interact With
Induction INDUCTION: Strongly expressed in planta but not expressed in axenic culture (PubMed:17308187). {ECO:0000269|PubMed:17308187}.
Subcellular Location
Modified Residue
Post Translational Modification
Signal Peptide
Structure 3D
Cross Reference PDB -
Mapped Pubmed ID -
Motif
Gene Encoded By
Mass 38,608
Kinetics
Metal Binding
Rhea ID RHEA:34435
Cross Reference Brenda