Detail Information for IndEnz0007000681
IED ID IndEnz0007000681
Enzyme Type ID catalase000681
Protein Name Inactive cytochrome P450 monooxygenase cloA
Ergot alkaloid synthesis protein cloA
Inactive clavine oxidase
CLOA
Gene Name cloA
Organism Claviceps fusiformis (Ergot fungus)
Taxonomic Lineage cellular organisms Eukaryota Opisthokonta Fungi Dikarya Ascomycota saccharomyceta Pezizomycotina leotiomyceta sordariomyceta Sordariomycetes Hypocreomycetidae Hypocreales Clavicipitaceae Claviceps Claviceps fusiformis (Ergot fungus)
Enzyme Sequence MLLLWLYQALPTSLTRILLTAGLCVPCALVIHGIYNLYFHPLRNVPGPKLGALTDLYAFYWNWIRGVGYSKQFDRWHKHYNSSVIRIGPNDVHTTQVELYDVIHKAGSTWLKDKSFYKHFGGLDAMIDPREYRTYRTHLAPLYSQRAVDGLVSKMDDDLAICGQKTTKMAENGKAVNMARVLTTLSTSMILYNLFSMDISLWECNDYHPFLEAFEHIMAQIWLFLSYPRLATCLSLIPGTSLARLAPSWTTFMNSCAAWCDEDARKQRASDDQSIRDSHSKRYYALKHTDANDKKSIIPAPLDELFSFIAGGTDTTAYTTGCAFFYILSSPSVCRKLVKELDENASFIRNGLDYHKIQTLPYLNAVIKETLRISVPVPGCLPRVVPEGGITVGSFHLPAGTALSITQQAISLNQDIFPSPLCFSPERWIGPAAAGLDKWNVAFGRGSRQCIGTTLAYLELRCVVAYFFSRFDMTLTAKNGDGHRWVDRFVAVNLDTVEVLVLSDRWSGARY
Enzyme Length 511
Uniprot Accession Number A8C7R4
Absorption
Active Site
Activity Regulation
Binding Site
Calcium Binding
catalytic Activity
DNA Binding
EC Number
Enzyme Function FUNCTION: Inactive cytochrome P450 monooxygenase; part of the gene cluster that mediates the biosynthesis of fungal ergot alkaloid (PubMed:17720822). DmaW catalyzes the first step of ergot alkaloid biosynthesis by condensing dimethylallyl diphosphate (DMAP) and tryptophan to form 4-dimethylallyl-L-tryptophan (By similarity). The second step is catalyzed by the methyltransferase easF that methylates 4-dimethylallyl-L-tryptophan in the presence of S-adenosyl-L-methionine, resulting in the formation of 4-dimethylallyl-L-abrine (By similarity). The catalase easC and the FAD-dependent oxidoreductase easE then transform 4-dimethylallyl-L-abrine to chanoclavine-I which is further oxidized by easD in the presence of NAD(+), resulting in the formation of chanoclavine-I aldehyde (By similarity). Agroclavine dehydrogenase easG then mediates the conversion of chanoclavine-I aldehyde to agroclavine via a non-enzymatic adduct reaction: the substrate is an iminium intermediate that is formed spontaneously from chanoclavine-I aldehyde in the presence of glutathione (By similarity). Further conversion of agroclavine to paspalic acid is a two-step process involving oxidation of agroclavine to elymoclavine and of elymoclavine to paspalic acid, the second step being performed by the elymoclavine oxidase cloA (PubMed:17720822). However, cloA does not encode a functional enzyme indicating that C.fusiformis terminates its ergot alkaloid pathway at elymoclavine (PubMed:17720822). {ECO:0000250|UniProtKB:Q2PBY6, ECO:0000269|PubMed:17720822}.
Temperature Dependency
PH Dependency
Pathway
nucleotide Binding
Features Chain (1); Glycosylation (2); Metal binding (1); Transmembrane (1)
Keywords Glycoprotein;Heme;Iron;Membrane;Metal-binding;Transmembrane;Transmembrane helix
Interact With
Induction
Subcellular Location SUBCELLULAR LOCATION: Membrane {ECO:0000255}; Single-pass membrane protein {ECO:0000255}.
Modified Residue
Post Translational Modification
Signal Peptide
Structure 3D
Cross Reference PDB -
Mapped Pubmed ID -
Motif
Gene Encoded By
Mass 57,584
Kinetics
Metal Binding METAL 450; /note=Iron (heme axial ligand); /evidence=ECO:0000250|UniProtKB:P04798
Rhea ID
Cross Reference Brenda