Detail Information for IndEnz0010000650
IED ID IndEnz0010000650
Enzyme Type ID esterase000650
Protein Name Probable carboxylesterase M8
EC 3.1.1.1
Squalestatin S1 biosynthesis cluster protein M8
Gene Name M8
Organism Phoma sp. (strain ATCC 20986 / MF5453)
Taxonomic Lineage cellular organisms Eukaryota Opisthokonta Fungi Dikarya Ascomycota saccharomyceta Pezizomycotina leotiomyceta dothideomyceta Dothideomycetes Pleosporomycetidae Pleosporales Pleosporineae Didymellaceae Phoma unclassified Phoma Phoma sp. (strain ATCC 20986 / MF5453)
Enzyme Sequence MDFPGNSRFASFVRADFEYSRVEDHPLIASVLSPRKAEESAQRQSPVLVFWHGGGFVVGGRLYEPWWSEWLIEYALSQDAIIVAPDYRLLPEATGADIFDDVEAFWIWLHKSLPSLAQSNSWHAKPDLTRILCVGQSGGGSMAVHSALLHPEFNIKAIVSLYAPLYHNVPNLTVPRPRRILGTMPPPPRKAEGLIRSYIKQSKGSVRTGGDPLDMWELLLCLLQQGRLISLMNLKPDSRLDTPSLLRQVGKLPPLWLIHGEDDSVIPFKCSEMFLDELRVIAPSTSVLVSARTGEHNFDTSLTMKEDWIRNGCDFLSTHW
Enzyme Length 320
Uniprot Accession Number A0A3G1DJF0
Absorption
Active Site ACT_SITE 137; /evidence=ECO:0000250|UniProtKB:Q5NUF3; ACT_SITE 296; /evidence=ECO:0000250|UniProtKB:Q5NUF3
Activity Regulation
Binding Site
Calcium Binding
catalytic Activity CATALYTIC ACTIVITY: Reaction=a carboxylic ester + H2O = a carboxylate + an alcohol + H(+); Xref=Rhea:RHEA:21164, ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:29067, ChEBI:CHEBI:30879, ChEBI:CHEBI:33308; EC=3.1.1.1; Evidence={ECO:0000305};
DNA Binding
EC Number 3.1.1.1
Enzyme Function FUNCTION: Probable carboxylesterase; part of the gene cluster that mediates the biosynthesis of squalestatin S1 (SQS1, also known as zaragozic acid A), a heavily oxidized fungal polyketide that offers potent cholesterol lowering activity by targeting squalene synthase (SS) (PubMed:27056201). SQS1 is composed of a 2,8-dioxobicyclic[3.2.1]octane-3,4,5-tricarboxyclic acid core that is connected to two lipophilic polyketide arms (PubMed:27056201). These initial steps feature the priming of an unusual benzoic acid starter unit onto the highly reducing polyketide synthase pks2, followed by oxaloacetate extension and product release to generate a tricarboxylic acid containing product (By similarity). The phenylalanine ammonia lyase (PAL) M7 and the acyl-CoA ligase M9 are involved in transforming phenylalanine into benzoyl-CoA (By similarity). The citrate synthase-like protein R3 is involved in connecting the C-alpha-carbons of the hexaketide chain and oxaloacetate to afford the tricarboxylic acid unit (By similarity). The potential hydrolytic enzymes, M8 and M10, are in close proximity to pks2 and may participate in product release (By similarity). On the other side, the tetraketide arm is synthesized by a the squalestatin tetraketide synthase pks1 and enzymatically esterified to the core in the last biosynthetic step, by the acetyltransferase M4 (PubMed:11251290, PubMed:15489970, PubMed:28106181). The biosynthesis of the tetraketide must involve 3 rounds of chain extension (PubMed:11251290, PubMed:15489970, PubMed:28106181). After the first and second rounds methyl-transfer occurs, and in all rounds of extension the ketoreductase and dehydratase are active (PubMed:11251290, PubMed:15489970, PubMed:28106181). The enoyl reductase and C-MeT of pks1 are not active in the final round of extension (PubMed:11251290, PubMed:15489970, PubMed:28106181). The acetyltransferase M4 appears to have a broad substrate selectivity for its acyl CoA substrate, allowing the in vitro synthesis of novel squalestatins (Probable). The biosynthesis of SQS1 requires several oxidative steps likely performed by oxidoreductases M1, R1 and R2 (Probable). Finally, in support of the identification of the cluster as being responsible for SQS1 production, the cluster contains a gene encoding a putative squalene synthase (SS) R6, suggesting a likely mechanism for self-resistance (Probable). {ECO:0000250|UniProtKB:A0A345BJN2, ECO:0000269|PubMed:11251290, ECO:0000269|PubMed:15489970, ECO:0000269|PubMed:27056201, ECO:0000269|PubMed:28106181, ECO:0000305|PubMed:27056201}.
Temperature Dependency
PH Dependency
Pathway PATHWAY: Secondary metabolite biosynthesis. {ECO:0000305|PubMed:27056201}.
nucleotide Binding
Features Active site (2); Chain (1); Motif (1)
Keywords Hydrolase
Interact With
Induction
Subcellular Location
Modified Residue
Post Translational Modification
Signal Peptide
Structure 3D
Cross Reference PDB -
Mapped Pubmed ID -
Motif MOTIF 52..54; /note=Involved in the stabilization of the negatively charged intermediate by the formation of the oxyanion hole; /evidence=ECO:0000250|UniProtKB:Q5NUF3
Gene Encoded By
Mass 36,010
Kinetics
Metal Binding
Rhea ID RHEA:21164
Cross Reference Brenda