Detail Information for IndEnz0016000108
IED ID IndEnz0016000108
Enzyme Type ID tyrosinase000108
Protein Name Dioxygenase hkm4
EC 1.14.11.-
Hancockiamides biosynthesis cluster protein 4
Gene Name
Organism Aspergillus hancockii
Taxonomic Lineage cellular organisms Eukaryota Opisthokonta Fungi Dikarya Ascomycota saccharomyceta Pezizomycotina leotiomyceta Eurotiomycetes Eurotiomycetidae Eurotiales (green and blue molds) Aspergillaceae Aspergillus Aspergillus hancockii
Enzyme Sequence MSIPSGTEPQIKRFSVTADPDTIFQAYQEDGVVIIQGFLSPEQLDKFNREVNPRLAHQRQGYQPSLKARLMEGSLSALLPPQQKRVHNLAGFSKVFRHDILNHGLMHELCRRAFAATGDYWLSSGAVIENGPGTPEQGWHRDQPSYPVIQAGPGTAEGMVNFFTALTDFTAEAGATQFMHGSHKVVGIPDGDPNHPMLIAEMKAGDSVLLSGKLVHRGGLNNTSDFFRRALSLAISPCVLTPYESSIHLSRPLVESMTPLAQRMIAWRSASIPPPYQIGMWTLNMNEVGEEMGLKYNQPYDEDEE
Enzyme Length 305
Uniprot Accession Number P0DUL2
Absorption
Active Site
Activity Regulation
Binding Site
Calcium Binding
catalytic Activity
DNA Binding
EC Number 1.14.11.-
Enzyme Function FUNCTION: Dioxygenase; part of the gene cluster that mediates the biosynthesis of hancockiamides, an unusual new family of N-cinnamoylated piperazines (PubMed:33242032). The NRPS hkm10 and the NmrA-like reductase hkm9 are proposed to convert two molecules of L-Phe to the intermediary piperazine called xenocockiamide A (Probable). Xenocockiamide A is then converted to hancockiamide D via a series of hydroxylations and O-methylations (Probable). The tyrosinase hkm6 may catalyze an aromatic hydroxylation, then the 2-oxoglutarate-dependent Fe(II) dioxygenase hkm4 and the FAD-dependent phenol hydroxylase hkm7 may catalyze consecutive hydroxylations to install 2 more hydroxy groups, and the methyltransferase hkm8 probably catalyzes two methylations using 2 molecules of S-adenosyl-L-methionine (SAM) (Probable). The NRPS hkm11 activates and transfers trans-cinnamate supplied by the PAL hkm12 to hancockiamide D and produces hancockiamide A (PubMed:33242032). NRPS Hkm11 has the flexibility to tolerate the bulky hancockiamide G as a substrate and the absence of the acetyl-transferase hkm3 opens up the opportunity for hkm11 to introduce a second N-cinnamoyl moiety (PubMed:33242032). The cytochrome P450 monooxygenase hkm5 catalyzes the methylenedioxy bridge formation, converting hancockiamide A into hancockiamide G (PubMed:33242032). Hkm5 can also convert hancockiamide B into hancockiamide C, and hancockiamide D into hancockiamide H (PubMed:33242032). The N-acetyltransferase hkm3 finally transfers an acetyl group to 1-N of piperazine, converting hancockiamide A into hancockiamide B and hancockiamide G into hancockiamide C (PubMed:33242032). {ECO:0000269|PubMed:33242032, ECO:0000305|PubMed:33242032}.
Temperature Dependency
PH Dependency
Pathway PATHWAY: Secondary metabolite biosynthesis. {ECO:0000305|PubMed:33242032}.
nucleotide Binding
Features Chain (1); Metal binding (3)
Keywords Dioxygenase;Iron;Metal-binding;Oxidoreductase
Interact With
Induction
Subcellular Location
Modified Residue
Post Translational Modification
Signal Peptide
Structure 3D
Cross Reference PDB -
Mapped Pubmed ID -
Motif
Gene Encoded By
Mass 33,741
Kinetics
Metal Binding METAL 140; /note=Iron; via tele nitrogen; /evidence=ECO:0000250|UniProtKB:G8GV69; METAL 142; /note=Iron; /evidence=ECO:0000250|UniProtKB:G8GV69; METAL 216; /note=Iron; via tele nitrogen; /evidence=ECO:0000250|UniProtKB:G8GV69
Rhea ID
Cross Reference Brenda